Bernoulli shifts and local density property
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2012), pp. 31-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the property LocDen for the squaring map in the space of all measure preserving transformations and in the space of mixing transformations. It is proved that Bernoulli shifts with an infinite entropy do not possess this property.
@article{VMUMM_2012_1_a4,
     author = {S. V. Tikhonov},
     title = {Bernoulli shifts and local density property},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {31--37},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a4/}
}
TY  - JOUR
AU  - S. V. Tikhonov
TI  - Bernoulli shifts and local density property
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 31
EP  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a4/
LA  - ru
ID  - VMUMM_2012_1_a4
ER  - 
%0 Journal Article
%A S. V. Tikhonov
%T Bernoulli shifts and local density property
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 31-37
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a4/
%G ru
%F VMUMM_2012_1_a4
S. V. Tikhonov. Bernoulli shifts and local density property. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2012), pp. 31-37. http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a4/

[1] King J.L.F., “The generic transformation has roots of all orders”, Colloq. Math., 84/85:2 (2000), 521–547 | DOI | MR

[2] Rue T. de la, Lasaro J. de Sam, “Une transformation gènèrique peut ètre insèrèe dans un flot”, Ann. Inst. Poincaré J.H., 39:1 (2003), 121–134 | DOI | MR

[3] Stepin A.M., Eremenko A.M., “Needinstvennost vklyucheniya v potok i obshirnost tsentralizatora dlya tipichnogo sokhranyayuschego meru preobrazovaniya”, Matem. sb., 195:12 (2004), 95–108 | DOI

[4] Ageev O.N., “Tipichnyi avtomorfizm prostranstva Lebega sopryazhen s $\mathbb{G}$-rasshireniem dlya lyuboi konechnoi abelevoi gruppy $\mathbb{G}$”, Dokl. RAN, 374:4 (2000), 439–442 | MR

[5] Tikhonov S.V., “Polnaya metrika vo mnozhestve peremeshivayuschikh preobrazovanii”, Matem. sb., 198:4 (2007), 135–158 | DOI

[6] Tikhonov S.V., “Polnaya metrika na mnozhestve peremeshivayuschikh preobrazovanii”, Uspekhi matem. nauk, 62:1 (2007), 209–210 | DOI | MR

[7] Kornfeld I., Sinai Ya., Fomin S., Ergodicheskaya teoriya, Nauka, M., 1980 | MR

[8] Rue T. de la, “2-fold and 3-fold mixing: why 3-dot-type counterexamples are impossible in one dimension”, Bull. Brazil. Math. Soc., 37:4 (2006), 503–521 | DOI | MR

[9] Khalmosh P.R., Lektsii po ergodicheskoi teorii, IL, M., 1959