Optimal synthesis in the time minimization problem under phase constraints
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2012), pp. 67-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The time minimization problem in a linear system with a scalar control under phase constraints is considered. This problem is reduced to the problem of maximal deviations. Necessary conditions of control optimality are obtained. The results are applied to the problem of uniaxial stabilization of a satellite in the presence of a gravitational torque. The stabilization is performed by a flywheel engine with a limited angular momentum.
@article{VMUMM_2012_1_a11,
     author = {V. V. Aleksandrov and A. D. Belen'kii and A. V. Lebedev and E. Matlalcuatzi Rugerio},
     title = {Optimal synthesis in the time minimization problem under phase constraints},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {67--71},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a11/}
}
TY  - JOUR
AU  - V. V. Aleksandrov
AU  - A. D. Belen'kii
AU  - A. V. Lebedev
AU  - E. Matlalcuatzi Rugerio
TI  - Optimal synthesis in the time minimization problem under phase constraints
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 67
EP  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a11/
LA  - ru
ID  - VMUMM_2012_1_a11
ER  - 
%0 Journal Article
%A V. V. Aleksandrov
%A A. D. Belen'kii
%A A. V. Lebedev
%A E. Matlalcuatzi Rugerio
%T Optimal synthesis in the time minimization problem under phase constraints
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 67-71
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a11/
%G ru
%F VMUMM_2012_1_a11
V. V. Aleksandrov; A. D. Belen'kii; A. V. Lebedev; E. Matlalcuatzi Rugerio. Optimal synthesis in the time minimization problem under phase constraints. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2012), pp. 67-71. http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a11/

[1] Aleksandrov V.V., Boltyanskii V.G., Lemak S.S., Parusnikov N.A., Tikhomirov V.M., Optimalnoe upravlenie dvizheniem, FIZMATLIT, M., 2005

[2] Arutyunov A.V., Magaril-Ilyaev G.G., Tikhomirov V.M., Printsip maksimuma Pontryagina. Dokazatelstvo i prilozheniya, Faktorial Press, M., 2006 | MR

[3] Vasilev V.N., Sistemy orientatsii kosmicheskikh apparatov, Izd-vo NPP “VNIIEM”, M., 2009

[4] Aleksandrov V.V., Cheremisin V.V., “Optimalnyi sintez v zadache odnoosnoi stabilizatsii sputnika pri nalichii fazovykh ogranichenii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2010, no. 6, 61–65

[5] Beletskii V.V., Dvizhenie sputnika vokrug tsentra mass v gravitatsionnom pole, Sovetskaya astronomiya, M., 1976