Compatibility conditions and equations of motion in the linear micropolar theory of elasticity
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2012), pp. 63-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The compatibility conditions in three-dimensional and two-dimensional linear micropolar elasticity theories in the distinct from forms spread in the scientific literature and analog of the formula of Cesaro are reduced. Besides formulas for definition of an antisymmetric part of strain tensor (stress tensor) through symmetric parts of strain tensor and bend-torsion tensor (stress tensor and couple-stress tensor) and an antisymmetric part of a bend-torsion tensor (couple-stress tensor) through an symmetric part of a bend-torsion tensor (couple-stress tensor) and also the integro-differential equations of motion of the micropolar theory elasticities concerning symmetric parts of stress tensor and couple-stress tensor are received.
@article{VMUMM_2012_1_a10,
     author = {M. U. Nikabadze},
     title = {Compatibility conditions and equations of motion in the linear micropolar theory of elasticity},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {63--66},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a10/}
}
TY  - JOUR
AU  - M. U. Nikabadze
TI  - Compatibility conditions and equations of motion in the linear micropolar theory of elasticity
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 63
EP  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a10/
LA  - ru
ID  - VMUMM_2012_1_a10
ER  - 
%0 Journal Article
%A M. U. Nikabadze
%T Compatibility conditions and equations of motion in the linear micropolar theory of elasticity
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 63-66
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a10/
%G ru
%F VMUMM_2012_1_a10
M. U. Nikabadze. Compatibility conditions and equations of motion in the linear micropolar theory of elasticity. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2012), pp. 63-66. http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a10/

[1] Lure A.I., Teoriya uprugosti, Nauka, M., 1970 | MR

[2] Lure A.I., Nelineinaya teoriya uprugosti, Nauka, M., 1980 | MR

[3] Muskhelishvili N.I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966 | MR

[4] Pobedrya B.E., Chislennye metody v teorii uprugosti i plastichnosti, Ucheb. posobie, 2-e izd., Izd-vo MGU, M., 1995 | MR

[5] Novatskii V., Teoriya uprugosti, Mir, M., 1975 | MR

[6] Aero E.L., Kuvshinskii E.V., “Kontinualnaya teoriya asimmetricheskoi uprugosti. Uchet “vnutrennego” vrascheniya”, Fiz. tverdogo tela, 6:9 (1963), 2591–2598 | MR

[7] Sandru N., “On some problems of the linear theory of the asymmetric elasticity”, Int. J. Eng. Sci., 4:1 (1966), 81–94 | DOI

[8] Eringen A.C., Microcontinuum field theories, v. 1, Foundation and solids, Springer-Verlag, N.Y., 1999 | MR

[9] Kupradze V.D., Gegelia T.G., Basheleishvili M.O., Burchuladze T.V., Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1976 | MR

[10] Vekua I.N., Osnovy tenzornogo analiza i teorii kovariantov, Nauka, M., 1978 | MR

[11] Nikabadze M.U., “O nekotorykh voprosakh tenzornogo ischisleniya. I”, Sovremennaya matematika i ee prilozheniya, Tr. In-ta kibernetiki Gruzii, 62, VINITI, M., 2009, 67–95

[12] Nikabadze M.U., “O nekotorykh voprosakh tenzornogo ischisleniya. II”, Sovremennaya matematika i ee prilozheniya, Tr. In-ta kibernetiki Gruzii, 62, VINITI, M., 2009, 96–130

[13] Pobedrya B.E., Lektsii po tenzornomu analizu, Izd-vo MGU, M., 1986

[14] Nikabadze M.U., “K usloviyam sovmestnosti v lineinoi mikropolyarnoi teorii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2010, no. 5, 48–51 | MR

[15] Nikabadze M.U., “K postroeniyu lineino nezavisimykh tenzorov”, Izv. RAN. Mekhan. tverdogo tela, 2009, no. 1, 17–36

[16] Pobedrya B.E., Sheshenin S.V., Kholmatov T., Zadacha v napryazheniyakh, Fan, Tashkent, 1988

[17] Pobedrya B.E., “Staticheskaya zadacha nesimmetrichnoi teorii uprugosti dlya izotropnoi sredy”, Vestn. Mosk. un-ta. Matem. Mekhan., 2005, no. 1, 54–59 | MR