The Poisson limit theorem for high extrema of a time series with seasonal component and monotone trend
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2012), pp. 12-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider Poisson's limit theorem for high extrema of a stationary time series with a monotone trend and an almost periodic component. It is assumed that the distribution function of the time series is maximum stable and the time series satisfies the weak dependence condition. The limit behavior of the random process of high extrema for this model is considered for the first time.
@article{VMUMM_2012_1_a1,
     author = {I. V. Rodionov},
     title = {The {Poisson} limit theorem for high extrema of a time series with seasonal component and monotone trend},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {12--17},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a1/}
}
TY  - JOUR
AU  - I. V. Rodionov
TI  - The Poisson limit theorem for high extrema of a time series with seasonal component and monotone trend
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 12
EP  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a1/
LA  - ru
ID  - VMUMM_2012_1_a1
ER  - 
%0 Journal Article
%A I. V. Rodionov
%T The Poisson limit theorem for high extrema of a time series with seasonal component and monotone trend
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 12-17
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a1/
%G ru
%F VMUMM_2012_1_a1
I. V. Rodionov. The Poisson limit theorem for high extrema of a time series with seasonal component and monotone trend. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2012), pp. 12-17. http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a1/

[1] Fereira A., Haan L. de., Extreme value theory. An introduction, Springer Series in Operations Research and Financial Engineering, Springer, N.Y., 2006 | MR

[2] Leadbetter M.R., Lingren G., Rootzén H., Extreme and related properties of random sequences and processes, Springer Statistics Series, Springer, Berlin–Heidelberg–N.Y., 1983 | DOI | MR

[3] Fisher R.A., Tippet L.H.C., “Limiting forms of the frequency distribution of the largest or smallest member of a sample”, Proc. Cambridge Phil. Soc., 24 (1928), 180–190 | DOI

[4] Leadbetter M.R., “On extreme values in stationary sequences”, Z. Wahrscheinlichkeitstheor. und verw. Geb., 28 (1974), 289–303 | DOI | MR

[5] Mladenovic P., Piterbarg V., “On asymptotic distribution of maxima of complete and incomplete samples from stationary sequences”, Stochast. Proc. and Appl., 116 (2006), 1977–1991 | DOI | MR

[6] Olshanskii K.A., “Ob ekstremalnom indekse prorezhennogo protsessa avtoregressii”, Vestn. Mosk. un-ta. Matem. Mekhan., 2004, no. 3, 17–23

[7] Kuznetsov D.S., “Predelnye teoremy dlya maksimuma sluchainykh velichin”, Vestn. Mosk. un-ta. Matem. Mekhan., 2005, no. 3, 6–9

[8] Kudrov A.V., Piterbarg V.I., “On maxima of partial samples in Gaussian sequences with pseudo-stationary trends”, Liet. matem. rink., 47:1 (2007), 1–10 | MR

[9] Kallenberg O., Random measures, Academic Press, N.Y., 1983 | MR