Connected components of spaces of Morse functions with fixed critical points
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2012), pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $M$ be a smooth closed orientable surface and $F=F_{p,q,r}$ be the space of Morse functions on $M$ having exactly $p$ critical points of local minima, $q\ge1$ saddle critical points, and $r$ critical points of local maxima, moreover all the points are fixed. Let $F_f$ be the connected component of a function $f\in F$ in $F.$ By means of the winding number introduced by Reinhart (1960), we construct a surjection $\pi_0(F)\to\mathbb{Z}^{p+r-1}$, in particular $|\pi_0(F)|=\infty$ and the component $F_f$ is not preserved under the Dehn twist about the boundary of any disk containing exactly two critical points, exactly one of which is a saddle point. Let $\mathscr{D}$ be the group of orientation preserving diffeomorphisms of $M$ leaving fixed the critical points, $\mathscr{D}^0$ be the connected component of $\operatorname{id}_M$ in $\mathscr{D},$ and $\mathscr{D}_f\subset\mathscr{D}$ the set of diffeomorphisms preserving $F_f.$ Let $\mathscr{H}_f$ be the subgroup of $\mathscr{D}_f$ generated by $\mathscr{D}^0$ and all diffeomorphisms $h\in\mathscr{D}$ preserving some functions $f_1\in F_f,$ and let $\mathscr{H}_f^\mathrm{abs}$ be its subgroup generated by $\mathscr{D}^0$ and the Dehn twists about the components of level curves of functions $f_1\in F_f.$ We prove that $\mathscr{H}_f^\mathrm{abs}\subsetneq\mathscr{D}_f$ if $q\ge2,$ and construct an epimorphism $\mathscr{D}_f/\mathscr{H}_f^\mathrm{abs}\to\mathbb{Z}_2^{q-1},$ by means of the winding number. A finite polyhedral complex $K=K_{p,q,r}$ associated to the space $F$ is defined. An epimorphism $\mu\colon\pi_1(K)\to\mathscr{D}_f/\mathscr{H}_f$ and finite generating sets for the groups $\mathscr{D}_f/\mathscr{D}^0$ and $\mathscr{D}_f/\mathscr{H}_f$ in terms of the 2-skeleton of the complex $K$ are constructed.
@article{VMUMM_2012_1_a0,
     author = {E. A. Kudryavtseva},
     title = {Connected components of spaces of {Morse} functions with fixed critical points},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--12},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a0/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
TI  - Connected components of spaces of Morse functions with fixed critical points
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2012
SP  - 3
EP  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a0/
LA  - ru
ID  - VMUMM_2012_1_a0
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%T Connected components of spaces of Morse functions with fixed critical points
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2012
%P 3-12
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a0/
%G ru
%F VMUMM_2012_1_a0
E. A. Kudryavtseva. Connected components of spaces of Morse functions with fixed critical points. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2012), pp. 3-12. http://geodesic.mathdoc.fr/item/VMUMM_2012_1_a0/

[1] Reinhart B.L., “The winding number on two-manifolds”, Ann. Inst. Fourier, 10 (1960), 271–283 | DOI | MR

[2] Burman Yu.M., “Morse theory for functions of two variables without critical points”, Functional Differential Equations, 3:1–2 (1996), 31–44 | MR

[3] Burman Yu.M., “Triangulation of surfaces with boundary and the homotopy principle for functions without critical points”, Ann. Global Anal. and Geometry, 17:3 (1999), 221–238 | DOI | MR

[4] Kudryavtseva E.A., “Realizatsiya gladkikh funktsii na poverkhnostyakh v vide funktsii vysoty”, Matem. sb., 190:3 (1999), 29–88 | DOI | MR

[5] Kudryavtseva E.A., “Canonical form of Reeb graph for Morse functions on surfaces. Inversion of 2-sphere in 3-space”, Int. J. Shape Modeling, 5:1 (1999), 69–80 | DOI

[6] Sharko V.V., “Funktsii na poverkhnostyakh. I”, Nekotorye problemy sovremennoi matematiki, Tr. Matem. in-ta Ukr. NAN, 25, ed. V.V. Sharko, Naukova dumka, Kiev, 1998, 408–434 | MR

[7] Maksymenko S.I., “Path-components of Morse mappings spaces on surfaces”, Comment. math. helv., 80 (2005), 655–690 | DOI | MR

[8] Arnold V.I., “Prostranstva funktsii s umerennymi osobennostyami”, Funkts. analiz i ego pril., 23:3 (1989), 1–10 | DOI | MR

[9] Fomenko A.T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575

[10] Bolsinov A.V., Fomenko A.T., “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii, I”, Matem. sb., 185:4 (1994), 27–89 | MR

[11] Bolsinov A.V., Fomenko A.T., Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, Nauka, M., 1997 | MR

[12] Kudryavtseva E.A., “Ustoichivye topologicheskie i gladkie invarianty sopryazhennosti gamiltonovykh sistem na poverkhnostyakh”, Topologicheskie metody v teorii gamiltonovykh sistem, eds. A.T. Fomenko, A.V. Bolsinov, Faktorial, M., 1998, 147–202 | MR

[13] Kulinich E.V., “On topologically equivalent Morse functions on surfaces”, Methods Funct. Anal. and Topology, 4:1 (1998), 59–64 | MR

[14] Maksymenko S.I., “Homotopy types of stabilizers and orbits of Morse functions on surfaces”, Ann. Global Anal. and Geometry, 29:3 (2006), 241–285 | DOI | MR

[15] Kudryavtseva E.A., “Ravnomernaya lemma Morsa i kriterii izotopnosti funktsii Morsa na poverkhnostyakh”, Vestn. Mosk. un-ta. Matem. Mekhan., 2009, no. 4, 13–22

[16] Kudryavtseva E.A., Permyakov D.A., “Osnaschennye funktsii Morsa na poverkhnostyakh”, Matem. sb., 201:4 (2010), 33–98 | DOI

[17] Dehn M., “Die Gruppe der Abbildungsklassen (Das arithmetische Feld auf Flächen)”, Acta math., 69 (1938), 135–206 | DOI | MR

[18] Johnson D., “The structure of the Torelli group. II: A characterization of the group generated by twists on bounding curves”, Topology, 24:2 (1985), 113–126 | DOI | MR

[19] Chillingworth D.R.J., “Winding numbers on surfaces, I”, Math. Ann., 196 (1972), 218–249 | DOI | MR

[20] Bridson M.R., Haefliger A., Metric spaces of non-positive curvature, Springer, Berlin–Heidelberg–N.Y.–Barcelona–Hong Kong–London–Milan–Paris–Singapore–Tokyo, 1999 | MR

[21] Ziegler G.M., Lectures on Polytopes, Graduate Texts in Mathematics, 152, Springer-Verlag, Berlin–N.Y., 1995 | DOI | MR