Oscillation and wandering of solutions to a second order differential equation
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2011), pp. 21-26
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Lyapunov's oscillation and wandering characteristics of solutions to a second order linear equation are defined, namely, the mean frequency of a solution, of its derivative or their various linear combinations, the mean angular velocity of the vector composed of a solution and its derivative, also wandering indices derived from that velocity. Nearly all of the values introduced for any equation are proved to be the same: for the autonomic equation – just all (moreover they coincide with the modules of the imaginary parts of the roots of the characteristic polynomial), but even for the periodic one – generally speaking, not all.
			
            
            
            
          
        
      @article{VMUMM_2011_6_a4,
     author = {I. N. Sergeev},
     title = {Oscillation and wandering of solutions to a second order differential equation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {21--26},
     publisher = {mathdoc},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a4/}
}
                      
                      
                    TY - JOUR AU - I. N. Sergeev TI - Oscillation and wandering of solutions to a second order differential equation JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2011 SP - 21 EP - 26 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a4/ LA - ru ID - VMUMM_2011_6_a4 ER -
I. N. Sergeev. Oscillation and wandering of solutions to a second order differential equation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2011), pp. 21-26. http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a4/
