Oscillation and wandering of solutions to a second order differential equation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2011), pp. 21-26

Voir la notice de l'article provenant de la source Math-Net.Ru

The Lyapunov's oscillation and wandering characteristics of solutions to a second order linear equation are defined, namely, the mean frequency of a solution, of its derivative or their various linear combinations, the mean angular velocity of the vector composed of a solution and its derivative, also wandering indices derived from that velocity. Nearly all of the values introduced for any equation are proved to be the same: for the autonomic equation – just all (moreover they coincide with the modules of the imaginary parts of the roots of the characteristic polynomial), but even for the periodic one – generally speaking, not all.
@article{VMUMM_2011_6_a4,
     author = {I. N. Sergeev},
     title = {Oscillation and wandering of solutions to a second order differential equation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {21--26},
     publisher = {mathdoc},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a4/}
}
TY  - JOUR
AU  - I. N. Sergeev
TI  - Oscillation and wandering of solutions to a second order differential equation
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 21
EP  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a4/
LA  - ru
ID  - VMUMM_2011_6_a4
ER  - 
%0 Journal Article
%A I. N. Sergeev
%T Oscillation and wandering of solutions to a second order differential equation
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 21-26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a4/
%G ru
%F VMUMM_2011_6_a4
I. N. Sergeev. Oscillation and wandering of solutions to a second order differential equation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2011), pp. 21-26. http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a4/