Spectrum of a Jacobi matrix with exponentially growing matrix elements
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2011), pp. 15-21

Voir la notice de l'article provenant de la source Math-Net.Ru

A Jacobi matrix with an exponential growth of its elements and the corresponding symmetric operator are considered. It is proved that the eigenvalue problem for some self-adjoint extension of the operator in some Hilbert space is equivalent to the eigenvalue problem of the Sturm–Liouville operator with a discrete self-similar weight. An asymptotic formula for the distribution of eigenvalues is obtained.
@article{VMUMM_2011_6_a3,
     author = {I. A. Sheipak},
     title = {Spectrum of a {Jacobi} matrix with exponentially growing matrix elements},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {15--21},
     publisher = {mathdoc},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a3/}
}
TY  - JOUR
AU  - I. A. Sheipak
TI  - Spectrum of a Jacobi matrix with exponentially growing matrix elements
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 15
EP  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a3/
LA  - ru
ID  - VMUMM_2011_6_a3
ER  - 
%0 Journal Article
%A I. A. Sheipak
%T Spectrum of a Jacobi matrix with exponentially growing matrix elements
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 15-21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a3/
%G ru
%F VMUMM_2011_6_a3
I. A. Sheipak. Spectrum of a Jacobi matrix with exponentially growing matrix elements. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2011), pp. 15-21. http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a3/