Multicomponent models of friction
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2011), pp. 57-59

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of motion of a homogeneous ball on a horizontal plane is considered. It is assumed that the contact patch is a spherical segment, whereas the pressure center does not coincide with the center of the contact patch and is displaced in the direction of the ball sliding. The friction force has two components that are parallel and orthogonal to the sliding velocity; the friction force moment has a vertical component and two horizontal components.
@article{VMUMM_2011_6_a13,
     author = {O. S. Sentemova},
     title = {Multicomponent models of friction},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {57--59},
     publisher = {mathdoc},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a13/}
}
TY  - JOUR
AU  - O. S. Sentemova
TI  - Multicomponent models of friction
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 57
EP  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a13/
LA  - ru
ID  - VMUMM_2011_6_a13
ER  - 
%0 Journal Article
%A O. S. Sentemova
%T Multicomponent models of friction
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 57-59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a13/
%G ru
%F VMUMM_2011_6_a13
O. S. Sentemova. Multicomponent models of friction. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2011), pp. 57-59. http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a13/