Inertial manifold for a hyperbolic equation with dissipation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2011), pp. 3-7
{Sufficient conditions for the existence of an inertial manifold are found for the equation $u_{tt}+2\gamma u_t-\Delta u=f(u, u_t)$, $u=u(x, t), x\in\Omega\Subset\mathbb{R}^N, u|_{\partial\Omega}=0, t>0$ and the function $f$ is supposed to satisfy the Lipschitz condition.
@article{VMUMM_2011_6_a0,
author = {N. A. Chalkina},
title = {Inertial manifold for a hyperbolic equation with dissipation},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--7},
year = {2011},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a0/}
}
N. A. Chalkina. Inertial manifold for a hyperbolic equation with dissipation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2011), pp. 3-7. http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a0/