Inertial manifold for a hyperbolic equation with dissipation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2011), pp. 3-7

Voir la notice de l'article provenant de la source Math-Net.Ru

{Sufficient conditions for the existence of an inertial manifold are found for the equation $u_{tt}+2\gamma u_t-\Delta u=f(u, u_t)$, $u=u(x, t), x\in\Omega\Subset\mathbb{R}^N, u|_{\partial\Omega}=0, t>0$ and the function $f$ is supposed to satisfy the Lipschitz condition.
@article{VMUMM_2011_6_a0,
     author = {N. A. Chalkina},
     title = {Inertial manifold for a hyperbolic equation with dissipation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--7},
     publisher = {mathdoc},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a0/}
}
TY  - JOUR
AU  - N. A. Chalkina
TI  - Inertial manifold for a hyperbolic equation with dissipation
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 3
EP  - 7
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a0/
LA  - ru
ID  - VMUMM_2011_6_a0
ER  - 
%0 Journal Article
%A N. A. Chalkina
%T Inertial manifold for a hyperbolic equation with dissipation
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 3-7
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a0/
%G ru
%F VMUMM_2011_6_a0
N. A. Chalkina. Inertial manifold for a hyperbolic equation with dissipation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2011), pp. 3-7. http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a0/