Inertial manifold for a hyperbolic equation with dissipation
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2011), pp. 3-7
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			{Sufficient conditions for the existence of an inertial manifold are found for the equation $u_{tt}+2\gamma u_t-\Delta u=f(u, u_t)$, 
$u=u(x, t), x\in\Omega\Subset\mathbb{R}^N, u|_{\partial\Omega}=0, t>0$ and the function $f$ is supposed to satisfy the Lipschitz condition.
			
            
            
            
          
        
      @article{VMUMM_2011_6_a0,
     author = {N. A. Chalkina},
     title = {Inertial manifold for a hyperbolic equation with dissipation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--7},
     publisher = {mathdoc},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a0/}
}
                      
                      
                    N. A. Chalkina. Inertial manifold for a hyperbolic equation with dissipation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2011), pp. 3-7. http://geodesic.mathdoc.fr/item/VMUMM_2011_6_a0/
