The lattice of extensions of the modal logic of two equivalence relations has the cardinality of the continuum
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2011), pp. 46-48
Voir la notice de l'article provenant de la source Math-Net.Ru
A continuum of different modal logics over $S5 \otimes S5$ is constructed in the paper, which proves that the capacity of the lattice of all normal extensions of the logic of two equivalence relations $\operatorname{Ext}(S5\otimes S5)$ is a continuum.
@article{VMUMM_2011_4_a7,
author = {M. M. Izmailov},
title = {The lattice of extensions of the modal logic of two equivalence relations has the cardinality of the continuum},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {46--48},
publisher = {mathdoc},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a7/}
}
TY - JOUR AU - M. M. Izmailov TI - The lattice of extensions of the modal logic of two equivalence relations has the cardinality of the continuum JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2011 SP - 46 EP - 48 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a7/ LA - ru ID - VMUMM_2011_4_a7 ER -
%0 Journal Article %A M. M. Izmailov %T The lattice of extensions of the modal logic of two equivalence relations has the cardinality of the continuum %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2011 %P 46-48 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a7/ %G ru %F VMUMM_2011_4_a7
M. M. Izmailov. The lattice of extensions of the modal logic of two equivalence relations has the cardinality of the continuum. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2011), pp. 46-48. http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a7/