The lattice of extensions of the modal logic of two equivalence relations has the cardinality of the continuum
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2011), pp. 46-48

Voir la notice de l'article provenant de la source Math-Net.Ru

A continuum of different modal logics over $S5 \otimes S5$ is constructed in the paper, which proves that the capacity of the lattice of all normal extensions of the logic of two equivalence relations $\operatorname{Ext}(S5\otimes S5)$ is a continuum.
@article{VMUMM_2011_4_a7,
     author = {M. M. Izmailov},
     title = {The lattice of extensions of the modal logic of two equivalence relations has the cardinality of the continuum},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {46--48},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a7/}
}
TY  - JOUR
AU  - M. M. Izmailov
TI  - The lattice of extensions of the modal logic of two equivalence relations has the cardinality of the continuum
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 46
EP  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a7/
LA  - ru
ID  - VMUMM_2011_4_a7
ER  - 
%0 Journal Article
%A M. M. Izmailov
%T The lattice of extensions of the modal logic of two equivalence relations has the cardinality of the continuum
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 46-48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a7/
%G ru
%F VMUMM_2011_4_a7
M. M. Izmailov. The lattice of extensions of the modal logic of two equivalence relations has the cardinality of the continuum. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2011), pp. 46-48. http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a7/