The optimal stopping problem concerned with ultimate maximum of a L\'evy process
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2011), pp. 22-27

Voir la notice de l'article provenant de la source Math-Net.Ru

For a Lévy process $X=(X_{t})_{0\le t\infty}$ we consider the moment $\theta=\inf\{t\ge 0\colon\sup_{s\le t} X_{s}=\sup_{s\ge 0}X_{s}\}$. We study an optimal approximation of the moment $\theta$ using the information available at the moment. As an example we consider a Lévy process which is a combination of a Brownian motion with a drift and a Poisson process.
@article{VMUMM_2011_4_a3,
     author = {S. S. Sinelnikov},
     title = {The optimal stopping problem concerned with ultimate maximum of a {L\'evy} process},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {22--27},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a3/}
}
TY  - JOUR
AU  - S. S. Sinelnikov
TI  - The optimal stopping problem concerned with ultimate maximum of a L\'evy process
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 22
EP  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a3/
LA  - ru
ID  - VMUMM_2011_4_a3
ER  - 
%0 Journal Article
%A S. S. Sinelnikov
%T The optimal stopping problem concerned with ultimate maximum of a L\'evy process
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 22-27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a3/
%G ru
%F VMUMM_2011_4_a3
S. S. Sinelnikov. The optimal stopping problem concerned with ultimate maximum of a L\'evy process. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2011), pp. 22-27. http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a3/