The optimal stopping problem concerned with ultimate maximum of a L\'evy process
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2011), pp. 22-27
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a Lévy process $X=(X_{t})_{0\le t\infty}$ we consider the moment $\theta=\inf\{t\ge 0\colon\sup_{s\le t} X_{s}=\sup_{s\ge 0}X_{s}\}$. We study an optimal approximation of the moment $\theta$ using the information available at the moment. As an example we consider a Lévy process which is a combination of a Brownian motion with a drift and a Poisson process.
			
            
            
            
          
        
      @article{VMUMM_2011_4_a3,
     author = {S. S. Sinelnikov},
     title = {The optimal stopping problem concerned with ultimate maximum of a {L\'evy} process},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {22--27},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a3/}
}
                      
                      
                    TY - JOUR AU - S. S. Sinelnikov TI - The optimal stopping problem concerned with ultimate maximum of a L\'evy process JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2011 SP - 22 EP - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a3/ LA - ru ID - VMUMM_2011_4_a3 ER -
S. S. Sinelnikov. The optimal stopping problem concerned with ultimate maximum of a L\'evy process. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2011), pp. 22-27. http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a3/
