Reinsurance optimal strategy of a loss excess
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2011), pp. 17-22
Cet article a éte moissonné depuis la source Math-Net.Ru
Dynamic programming technique is applied to find the optimal strategy for the dynamic XL reinsurance. We consider a risk process modelled by a compound Poisson process and the excess of loss reinsurance determined by the retention level and layer. We find the optimal survival probability as a solution to corresponding HJB equation and show the existence of the optimal reinsurance strategy. Numerical examples in the case of exponentially, log-normally, and Pareto distributed claims are presented.
@article{VMUMM_2011_4_a2,
author = {A. N. Gromov},
title = {Reinsurance optimal strategy of a loss excess},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {17--22},
year = {2011},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a2/}
}
A. N. Gromov. Reinsurance optimal strategy of a loss excess. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2011), pp. 17-22. http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a2/