The topology of isoenergy surfaces for the Sokolov integrable case on the Lie algebra $\operatorname{so}(3,1)$
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2011), pp. 62-65
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Sokolov's integrable case on $\operatorname{so}(3,1)$ is studied. This is a Hamiltonian system with two degrees of freedom where both the hamiltonian and additional integral are homogeneous polynomials of degrees $2$ and $4$, respectively. The topology of isoenergy surfaces is described for different values of parameters.
			
            
            
            
          
        
      @article{VMUMM_2011_4_a13,
     author = {D. V. Novikov},
     title = {The topology of isoenergy surfaces for the {Sokolov} integrable case on the {Lie} algebra $\operatorname{so}(3,1)$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {62--65},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a13/}
}
                      
                      
                    TY  - JOUR
AU  - D. V. Novikov
TI  - The topology of isoenergy surfaces for the Sokolov integrable case on the Lie algebra $\operatorname{so}(3,1)$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 62
EP  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a13/
LA  - ru
ID  - VMUMM_2011_4_a13
ER  - 
                      
                      
                    %0 Journal Article
%A D. V. Novikov
%T The topology of isoenergy surfaces for the Sokolov integrable case on the Lie algebra $\operatorname{so}(3,1)$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 62-65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a13/
%G ru
%F VMUMM_2011_4_a13
                      
                      
                    D. V. Novikov. The topology of isoenergy surfaces for the Sokolov integrable case on the Lie algebra $\operatorname{so}(3,1)$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2011), pp. 62-65. http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a13/
                  
                