The topology of isoenergy surfaces for the Sokolov integrable case on the Lie algebra $\operatorname{so}(3,1)$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2011), pp. 62-65
Cet article a éte moissonné depuis la source Math-Net.Ru
Sokolov's integrable case on $\operatorname{so}(3,1)$ is studied. This is a Hamiltonian system with two degrees of freedom where both the hamiltonian and additional integral are homogeneous polynomials of degrees $2$ and $4$, respectively. The topology of isoenergy surfaces is described for different values of parameters.
@article{VMUMM_2011_4_a13,
author = {D. V. Novikov},
title = {The topology of isoenergy surfaces for the {Sokolov} integrable case on the {Lie} algebra $\operatorname{so}(3,1)$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {62--65},
year = {2011},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a13/}
}
TY - JOUR
AU - D. V. Novikov
TI - The topology of isoenergy surfaces for the Sokolov integrable case on the Lie algebra $\operatorname{so}(3,1)$
JO - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY - 2011
SP - 62
EP - 65
IS - 4
UR - http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a13/
LA - ru
ID - VMUMM_2011_4_a13
ER -
%0 Journal Article
%A D. V. Novikov
%T The topology of isoenergy surfaces for the Sokolov integrable case on the Lie algebra $\operatorname{so}(3,1)$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 62-65
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a13/
%G ru
%F VMUMM_2011_4_a13
D. V. Novikov. The topology of isoenergy surfaces for the Sokolov integrable case on the Lie algebra $\operatorname{so}(3,1)$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2011), pp. 62-65. http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a13/