Regularized traces of singular differential operators with canonical boundary conditions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2011), pp. 11-17

Voir la notice de l'article provenant de la source Math-Net.Ru

A self-adjoint differential operator $\mathbb L$ of order $2m$ is considered in $L_2[0,\infty)$ with classic boundary conditions $y^{(k_1)}(0)=y^{(k_2)}(0)=y^{(k_3)}(0)=\ldots =y^{(k_m)}(0)=0$, where $0\le k_1 k_2 \ldots k_m\le 2m-1$ and $\{k_s\}_{s=1}^{m}\cup \{2m-1-k_s\}_{s=1}^{m}=\{0,1,2,\dots ,2m-1\}$. The operator $\mathbb L$ is perturbed by the operator of multiplication by a real measurable bounded function $q(x)$ with a compact support: $\mathbb{P}f(x)=q(x)f(x)$, $f\in L_2[0,\infty )$. The regularized trace of the operator $\mathbb{L}+\mathbb{P}$ is calculated.
@article{VMUMM_2011_4_a1,
     author = {A. I. Kozko and A. S. Pechentsov},
     title = {Regularized traces of singular differential operators with canonical boundary conditions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {11--17},
     publisher = {mathdoc},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a1/}
}
TY  - JOUR
AU  - A. I. Kozko
AU  - A. S. Pechentsov
TI  - Regularized traces of singular differential operators with canonical boundary conditions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 11
EP  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a1/
LA  - ru
ID  - VMUMM_2011_4_a1
ER  - 
%0 Journal Article
%A A. I. Kozko
%A A. S. Pechentsov
%T Regularized traces of singular differential operators with canonical boundary conditions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 11-17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a1/
%G ru
%F VMUMM_2011_4_a1
A. I. Kozko; A. S. Pechentsov. Regularized traces of singular differential operators with canonical boundary conditions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2011), pp. 11-17. http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a1/