Regularized traces of singular differential operators with canonical boundary conditions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2011), pp. 11-17
Cet article a éte moissonné depuis la source Math-Net.Ru
A self-adjoint differential operator $\mathbb L$ of order $2m$ is considered in $L_2[0,\infty)$ with classic boundary conditions $y^{(k_1)}(0)=y^{(k_2)}(0)=y^{(k_3)}(0)=\ldots =y^{(k_m)}(0)=0$, where $0\le k_1< k_2< \ldots < k_m\le 2m-1$ and $\{k_s\}_{s=1}^{m}\cup \{2m-1-k_s\}_{s=1}^{m}=\{0,1,2,\dots ,2m-1\}$. The operator $\mathbb L$ is perturbed by the operator of multiplication by a real measurable bounded function $q(x)$ with a compact support: $\mathbb{P}f(x)=q(x)f(x)$, $f\in L_2[0,\infty )$. The regularized trace of the operator $\mathbb{L}+\mathbb{P}$ is calculated.
@article{VMUMM_2011_4_a1,
author = {A. I. Kozko and A. S. Pechentsov},
title = {Regularized traces of singular differential operators with canonical boundary conditions},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {11--17},
year = {2011},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a1/}
}
TY - JOUR AU - A. I. Kozko AU - A. S. Pechentsov TI - Regularized traces of singular differential operators with canonical boundary conditions JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2011 SP - 11 EP - 17 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a1/ LA - ru ID - VMUMM_2011_4_a1 ER -
%0 Journal Article %A A. I. Kozko %A A. S. Pechentsov %T Regularized traces of singular differential operators with canonical boundary conditions %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2011 %P 11-17 %N 4 %U http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a1/ %G ru %F VMUMM_2011_4_a1
A. I. Kozko; A. S. Pechentsov. Regularized traces of singular differential operators with canonical boundary conditions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2011), pp. 11-17. http://geodesic.mathdoc.fr/item/VMUMM_2011_4_a1/