Graded versions of Goldie's theorem
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2011), pp. 46-50

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the graded variants of Goldie's theorem of existence, structure and coincidence of right classical and maximal quotient rings of a semiprime (prime) right Goldie's ring (Theorems 10, 11, 13). The main problem, the existence of a homogeneous regular element in each $\operatorname{gr}$-essential right ideal, is solved by posing some additional requirements onto the group grading the ring or onto the homogeneous components of the ring.
@article{VMUMM_2011_3_a9,
     author = {A. L. Kanunnikov},
     title = {Graded versions of {Goldie's} theorem},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {46--50},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a9/}
}
TY  - JOUR
AU  - A. L. Kanunnikov
TI  - Graded versions of Goldie's theorem
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 46
EP  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a9/
LA  - ru
ID  - VMUMM_2011_3_a9
ER  - 
%0 Journal Article
%A A. L. Kanunnikov
%T Graded versions of Goldie's theorem
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 46-50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a9/
%G ru
%F VMUMM_2011_3_a9
A. L. Kanunnikov. Graded versions of Goldie's theorem. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2011), pp. 46-50. http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a9/