Graded versions of Goldie's theorem
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2011), pp. 46-50
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the graded variants of Goldie's theorem of existence, structure and coincidence of right classical and maximal quotient rings of a semiprime (prime) right Goldie's ring (Theorems 10, 11, 13). The main problem, the existence of a homogeneous regular element in each $\operatorname{gr}$-essential right ideal, is solved by posing some additional requirements onto the group grading the ring or onto the homogeneous components of the ring.
@article{VMUMM_2011_3_a9,
author = {A. L. Kanunnikov},
title = {Graded versions of {Goldie's} theorem},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {46--50},
publisher = {mathdoc},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a9/}
}
A. L. Kanunnikov. Graded versions of Goldie's theorem. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2011), pp. 46-50. http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a9/