Elasticity theory problem in terms of displacements for a cylindrical layer with strongly different characteristic sizes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2011), pp. 30-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analysis of the principal terms of the general asymptotic expansions for the solutions to the 3D elasticity boundary value problem in terms of displacements (quasistatic case, compressibility) for a cylindrical layer is performed. A ratio of the layer thickness to the height of the cylinder is a natural asymptotic parameter. The radius of the cylinder's base can be of an arbitrary “intermediate”, including endpoints, order. Such a geometry is typical, e.g., for a cylindrical body with characteristic macro-, micro- and nanosizes in various directions.
@article{VMUMM_2011_3_a5,
     author = {T. I. Garyaeva and D. V. Georgievskii},
     title = {Elasticity theory problem in terms of displacements for a cylindrical layer with strongly different characteristic sizes},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {30--36},
     year = {2011},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a5/}
}
TY  - JOUR
AU  - T. I. Garyaeva
AU  - D. V. Georgievskii
TI  - Elasticity theory problem in terms of displacements for a cylindrical layer with strongly different characteristic sizes
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 30
EP  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a5/
LA  - ru
ID  - VMUMM_2011_3_a5
ER  - 
%0 Journal Article
%A T. I. Garyaeva
%A D. V. Georgievskii
%T Elasticity theory problem in terms of displacements for a cylindrical layer with strongly different characteristic sizes
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 30-36
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a5/
%G ru
%F VMUMM_2011_3_a5
T. I. Garyaeva; D. V. Georgievskii. Elasticity theory problem in terms of displacements for a cylindrical layer with strongly different characteristic sizes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2011), pp. 30-36. http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a5/