Estimate of quadratic trigonometric sums with prime numbers
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2011), pp. 56-60

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimation of the modulus of an exponential sum over primes $$ S_2(\alpha;x,1)=\sum_{n\le x}\Lambda(n) e(\alpha(n+1)^2) $$ is obtained, where $\alpha$ is approximated by a rational number with a large denominator.
@article{VMUMM_2011_3_a12,
     author = {F. Z. Rahmonov},
     title = {Estimate of quadratic trigonometric sums with prime numbers},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {56--60},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a12/}
}
TY  - JOUR
AU  - F. Z. Rahmonov
TI  - Estimate of quadratic trigonometric sums with prime numbers
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 56
EP  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a12/
LA  - ru
ID  - VMUMM_2011_3_a12
ER  - 
%0 Journal Article
%A F. Z. Rahmonov
%T Estimate of quadratic trigonometric sums with prime numbers
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 56-60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a12/
%G ru
%F VMUMM_2011_3_a12
F. Z. Rahmonov. Estimate of quadratic trigonometric sums with prime numbers. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2011), pp. 56-60. http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a12/