The generalized Oppenheim expansions for the direct product of non-Archimedean fields
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2011), pp. 50-52

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known Oppenheim expansion algorithm in the field $\mathbb{Q}_p$ is generalized to the ring $\mathbb{Q}_g$, where $g=p_1\cdot\ldots\cdot p_{N}$. The metric properties of the digits of this expansion and also the metric properties of the coefficients of some expansions of polyadic numbers are studied.
@article{VMUMM_2011_3_a10,
     author = {I. Y. Sukharev},
     title = {The generalized {Oppenheim} expansions for the direct product of {non-Archimedean} fields},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {50--52},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a10/}
}
TY  - JOUR
AU  - I. Y. Sukharev
TI  - The generalized Oppenheim expansions for the direct product of non-Archimedean fields
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 50
EP  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a10/
LA  - ru
ID  - VMUMM_2011_3_a10
ER  - 
%0 Journal Article
%A I. Y. Sukharev
%T The generalized Oppenheim expansions for the direct product of non-Archimedean fields
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 50-52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a10/
%G ru
%F VMUMM_2011_3_a10
I. Y. Sukharev. The generalized Oppenheim expansions for the direct product of non-Archimedean fields. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2011), pp. 50-52. http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a10/