The generalized Oppenheim expansions for the direct product of non-Archimedean fields
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2011), pp. 50-52
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The well-known Oppenheim expansion algorithm in the field $\mathbb{Q}_p$ is generalized to the ring $\mathbb{Q}_g$, where $g=p_1\cdot\ldots\cdot p_{N}$. The metric properties of the digits of this expansion and also the metric properties of the coefficients of some expansions of polyadic numbers are studied.
			
            
            
            
          
        
      @article{VMUMM_2011_3_a10,
     author = {I. Y. Sukharev},
     title = {The generalized {Oppenheim} expansions for the direct product of {non-Archimedean} fields},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {50--52},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a10/}
}
                      
                      
                    TY - JOUR AU - I. Y. Sukharev TI - The generalized Oppenheim expansions for the direct product of non-Archimedean fields JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2011 SP - 50 EP - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a10/ LA - ru ID - VMUMM_2011_3_a10 ER -
I. Y. Sukharev. The generalized Oppenheim expansions for the direct product of non-Archimedean fields. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2011), pp. 50-52. http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a10/
