The length of joins in Lambek calculus
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2011), pp. 10-14

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1992, M. Pentus established a criterion for the existence of a type $C$ such that for given types $A$ and $B$ the sequents $A\to C$ and $B\to C$ are derivable in the Lambek calculus. In this paper we give an algorithm for construction of such a type $C$ (provided it exists) and prove a quadratic upper bound for its length.
@article{VMUMM_2011_3_a1,
     author = {A. A. Sorokin},
     title = {The length of joins in {Lambek} calculus},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {10--14},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a1/}
}
TY  - JOUR
AU  - A. A. Sorokin
TI  - The length of joins in Lambek calculus
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 10
EP  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a1/
LA  - ru
ID  - VMUMM_2011_3_a1
ER  - 
%0 Journal Article
%A A. A. Sorokin
%T The length of joins in Lambek calculus
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 10-14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a1/
%G ru
%F VMUMM_2011_3_a1
A. A. Sorokin. The length of joins in Lambek calculus. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2011), pp. 10-14. http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a1/