The length of joins in Lambek calculus
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2011), pp. 10-14
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In 1992, M. Pentus established a criterion for the existence of a type $C$ such that for given types $A$ and $B$ the sequents $A\to C$ and $B\to C$ are derivable in the Lambek calculus. In this paper we give an algorithm for construction of such a type $C$ (provided it exists) and prove a quadratic upper bound for its length.
			
            
            
            
          
        
      @article{VMUMM_2011_3_a1,
     author = {A. A. Sorokin},
     title = {The length of joins in {Lambek} calculus},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {10--14},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a1/}
}
                      
                      
                    A. A. Sorokin. The length of joins in Lambek calculus. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2011), pp. 10-14. http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a1/
