The length of joins in Lambek calculus
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2011), pp. 10-14
Cet article a éte moissonné depuis la source Math-Net.Ru
In 1992, M. Pentus established a criterion for the existence of a type $C$ such that for given types $A$ and $B$ the sequents $A\to C$ and $B\to C$ are derivable in the Lambek calculus. In this paper we give an algorithm for construction of such a type $C$ (provided it exists) and prove a quadratic upper bound for its length.
@article{VMUMM_2011_3_a1,
author = {A. A. Sorokin},
title = {The length of joins in {Lambek} calculus},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {10--14},
year = {2011},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a1/}
}
A. A. Sorokin. The length of joins in Lambek calculus. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2011), pp. 10-14. http://geodesic.mathdoc.fr/item/VMUMM_2011_3_a1/