A sufficient condition for coincidence of lower and upper exponents of the variety of linear algebras
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2011), pp. 36-39
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Numerical characteristics of identities of Lie algebras are studied in the paper. We prove the existence of fractional PI-exponent for one known earlier Lie algebra soluble of length three.
			
            
            
            
          
        
      @article{VMUMM_2011_2_a5,
     author = {A. B. Verevkin and M. V. Zaicev and S. P. Mishchenko},
     title = {A sufficient condition for coincidence of lower and upper exponents of the variety of linear algebras},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {36--39},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a5/}
}
                      
                      
                    TY - JOUR AU - A. B. Verevkin AU - M. V. Zaicev AU - S. P. Mishchenko TI - A sufficient condition for coincidence of lower and upper exponents of the variety of linear algebras JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2011 SP - 36 EP - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a5/ LA - ru ID - VMUMM_2011_2_a5 ER -
%0 Journal Article %A A. B. Verevkin %A M. V. Zaicev %A S. P. Mishchenko %T A sufficient condition for coincidence of lower and upper exponents of the variety of linear algebras %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2011 %P 36-39 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a5/ %G ru %F VMUMM_2011_2_a5
A. B. Verevkin; M. V. Zaicev; S. P. Mishchenko. A sufficient condition for coincidence of lower and upper exponents of the variety of linear algebras. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2011), pp. 36-39. http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a5/
