Maximal linked systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2011), pp. 27-32

Voir la notice de l'article provenant de la source Math-Net.Ru

The compact space such that the space $\lambda^3(X)$ of maximal $3$-linked systems is not normal is constructed. It is proved that for any product of infinite separable spaces there exists a maximal linked system with the support equal to the product space. It is proved that a set of maximal $3$-linked systems with continious supports is everywhere dense in the superextension $\lambda(X)$ if $X$ is connected and separable. The properties of seminormal functors preserving one-to-one points are discussed.
@article{VMUMM_2011_2_a3,
     author = {M. A. Dobrynina},
     title = {Maximal linked systems},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {27--32},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a3/}
}
TY  - JOUR
AU  - M. A. Dobrynina
TI  - Maximal linked systems
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 27
EP  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a3/
LA  - ru
ID  - VMUMM_2011_2_a3
ER  - 
%0 Journal Article
%A M. A. Dobrynina
%T Maximal linked systems
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 27-32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a3/
%G ru
%F VMUMM_2011_2_a3
M. A. Dobrynina. Maximal linked systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2011), pp. 27-32. http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a3/