Maximal linked systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2011), pp. 27-32
Voir la notice de l'article provenant de la source Math-Net.Ru
The compact space such that the space $\lambda^3(X)$ of maximal $3$-linked systems is not normal is constructed. It is proved that for any product of infinite separable spaces there exists a maximal linked system with the support equal to the product space. It is proved that a set of maximal $3$-linked systems with continious supports is everywhere dense in the superextension $\lambda(X)$ if $X$ is connected and separable. The properties of seminormal functors preserving one-to-one points are discussed.
@article{VMUMM_2011_2_a3,
author = {M. A. Dobrynina},
title = {Maximal linked systems},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {27--32},
publisher = {mathdoc},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a3/}
}
M. A. Dobrynina. Maximal linked systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2011), pp. 27-32. http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a3/