Saddle singularities of complexity $1$ of integrable Hamiltonian systems
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2011), pp. 10-20
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Properties of saddle singularities of rank $0$ and complexity $1$ for integrable Hamiltonian systems are studied. An invariant ($f_n$-graph) solving the problem of semi-local classification of saddle singularities of rank $0$ for an arbitrary complexity was constructed earlier by the author. In this paper, a more simple form of the invariant for singularities of complexity $1$ is obtained and some properties of such singularities are described in algebraic terms. In addition, the paper contains a list of saddle singularities of complexity $1$ for systems with three degrees of freedom.
			
            
            
            
          
        
      @article{VMUMM_2011_2_a1,
     author = {A. A. Oshemkov},
     title = {Saddle singularities of complexity $1$ of integrable {Hamiltonian} systems},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {10--20},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a1/}
}
                      
                      
                    TY - JOUR AU - A. A. Oshemkov TI - Saddle singularities of complexity $1$ of integrable Hamiltonian systems JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2011 SP - 10 EP - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a1/ LA - ru ID - VMUMM_2011_2_a1 ER -
A. A. Oshemkov. Saddle singularities of complexity $1$ of integrable Hamiltonian systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2011), pp. 10-20. http://geodesic.mathdoc.fr/item/VMUMM_2011_2_a1/
