Stability of the Couette flow of ideal rigid-plastic bodies
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2011), pp. 42-48

Voir la notice de l'article provenant de la source Math-Net.Ru

The general Rayleigh stability problem is studied for the plane flows of perfect rigid- plastic bodies. The stationary scattering theory is used for the Couette flow to describe the continuous and point spectra and to construct an expansion in eigenfunctions and generalized eigenfunctions. Some integral estimates are proposed for the stability of this flow.
@article{VMUMM_2011_1_a7,
     author = {V. N. Lapin},
     title = {Stability of the {Couette} flow of ideal rigid-plastic bodies},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {42--48},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a7/}
}
TY  - JOUR
AU  - V. N. Lapin
TI  - Stability of the Couette flow of ideal rigid-plastic bodies
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 42
EP  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a7/
LA  - ru
ID  - VMUMM_2011_1_a7
ER  - 
%0 Journal Article
%A V. N. Lapin
%T Stability of the Couette flow of ideal rigid-plastic bodies
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 42-48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a7/
%G ru
%F VMUMM_2011_1_a7
V. N. Lapin. Stability of the Couette flow of ideal rigid-plastic bodies. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2011), pp. 42-48. http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a7/