Maximal commutative subalgebras of functions on spaces dual to Lie algebras
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2011), pp. 31-36
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of searching the maximal commutative sets of polynomial functions on the dual space to the semidirect sum of a Lie algebra and a vector space is studied. It is proved that if the first component of the semidirect sum is a compact algebra, then the set of functions can be described explicitly. This result is applied to some particular Lie algebras.
@article{VMUMM_2011_1_a5,
author = {M. M. Derkach and A. S. Ten},
title = {Maximal commutative subalgebras of functions on spaces dual to {Lie} algebras},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {31--36},
publisher = {mathdoc},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a5/}
}
TY - JOUR AU - M. M. Derkach AU - A. S. Ten TI - Maximal commutative subalgebras of functions on spaces dual to Lie algebras JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2011 SP - 31 EP - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a5/ LA - ru ID - VMUMM_2011_1_a5 ER -
M. M. Derkach; A. S. Ten. Maximal commutative subalgebras of functions on spaces dual to Lie algebras. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2011), pp. 31-36. http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a5/