The growth of varieties generated by upper-triangular matrices algebras
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2011), pp. 66-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that if the characteristic of the basic field does not equal two, then there exists no variety of associative algebras whose growth is intermediate between polynomial and exponential. Let $UT_s$ be the algebra of upper triangular matrices of dimension $s$ over an arbitrary field. V. M. Petrogradsky proved that the exponent of any subvariety of $\operatorname{var}(UTs)$ exists and is an integer number. In his paper the growth estimates for such varieties are strengthened.
@article{VMUMM_2011_1_a13,
     author = {S. M. Ratseev},
     title = {The growth of varieties generated by upper-triangular matrices algebras},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {66--68},
     year = {2011},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a13/}
}
TY  - JOUR
AU  - S. M. Ratseev
TI  - The growth of varieties generated by upper-triangular matrices algebras
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 66
EP  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a13/
LA  - ru
ID  - VMUMM_2011_1_a13
ER  - 
%0 Journal Article
%A S. M. Ratseev
%T The growth of varieties generated by upper-triangular matrices algebras
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 66-68
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a13/
%G ru
%F VMUMM_2011_1_a13
S. M. Ratseev. The growth of varieties generated by upper-triangular matrices algebras. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2011), pp. 66-68. http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a13/