The growth of varieties generated by upper-triangular matrices algebras
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2011), pp. 66-68

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that if the characteristic of the basic field does not equal two, then there exists no variety of associative algebras whose growth is intermediate between polynomial and exponential. Let $UT_s$ be the algebra of upper triangular matrices of dimension $s$ over an arbitrary field. V. M. Petrogradsky proved that the exponent of any subvariety of $\operatorname{var}(UTs)$ exists and is an integer number. In his paper the growth estimates for such varieties are strengthened.
@article{VMUMM_2011_1_a13,
     author = {S. M. Ratseev},
     title = {The growth of varieties generated by upper-triangular matrices algebras},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {66--68},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a13/}
}
TY  - JOUR
AU  - S. M. Ratseev
TI  - The growth of varieties generated by upper-triangular matrices algebras
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 66
EP  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a13/
LA  - ru
ID  - VMUMM_2011_1_a13
ER  - 
%0 Journal Article
%A S. M. Ratseev
%T The growth of varieties generated by upper-triangular matrices algebras
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 66-68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a13/
%G ru
%F VMUMM_2011_1_a13
S. M. Ratseev. The growth of varieties generated by upper-triangular matrices algebras. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2011), pp. 66-68. http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a13/