Wronskian of derivations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2011), pp. 63-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An associative multilinear polynomial depending on $16$ variables and being skew-symmetric with respect to $12$ of them is presented. This polynomial provides us with a mapping recovering the algebra of regular functions of an irreducible affine variety from any smooth involutive distribution of dimension $2$.
@article{VMUMM_2011_1_a12,
     author = {G. A. Pogudin},
     title = {Wronskian of derivations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {63--65},
     year = {2011},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a12/}
}
TY  - JOUR
AU  - G. A. Pogudin
TI  - Wronskian of derivations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2011
SP  - 63
EP  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a12/
LA  - ru
ID  - VMUMM_2011_1_a12
ER  - 
%0 Journal Article
%A G. A. Pogudin
%T Wronskian of derivations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2011
%P 63-65
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a12/
%G ru
%F VMUMM_2011_1_a12
G. A. Pogudin. Wronskian of derivations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2011), pp. 63-65. http://geodesic.mathdoc.fr/item/VMUMM_2011_1_a12/