Group elements of some semisimple finite-dimensional Hopf algebras
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2010), pp. 15-20
Cet article a éte moissonné depuis la source Math-Net.Ru
V. A. Artamonov and I. A. Chubarov proved a criterion under which an element of some semisimple finite-dimensional Hopf algebra is group-like. The studied Hopf algebra has only one non-one-dimensional irreducible representation. Let $n$ be a dimension of this representation. It is shown in this paper that for odd prime $n$ the set of group-like elements of these algebras is a cyclic group of order $2n$.
@article{VMUMM_2010_5_a2,
author = {E. G. Puninskiy},
title = {Group elements of some semisimple finite-dimensional {Hopf} algebras},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {15--20},
year = {2010},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_5_a2/}
}
E. G. Puninskiy. Group elements of some semisimple finite-dimensional Hopf algebras. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2010), pp. 15-20. http://geodesic.mathdoc.fr/item/VMUMM_2010_5_a2/