Tensor approach to averaging Jacobi fields along geodesicswith random curvature
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2010), pp. 58-61
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers a Jacobi field along a geodesic on a Riemannian manifold on which the curvature is a stochastic process. We introduce the concept of a linearizing tensor formiung the base of derivation of the equations for $2$, $3$ and $4$-order moments. A theorem on the general form of the moment equation is proved.
@article{VMUMM_2010_5_a10,
     author = {D. A. Grachev},
     title = {Tensor approach to averaging {Jacobi} fields along geodesicswith random curvature},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {58--61},
     year = {2010},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_5_a10/}
}
TY  - JOUR
AU  - D. A. Grachev
TI  - Tensor approach to averaging Jacobi fields along geodesicswith random curvature
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2010
SP  - 58
EP  - 61
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2010_5_a10/
LA  - ru
ID  - VMUMM_2010_5_a10
ER  - 
%0 Journal Article
%A D. A. Grachev
%T Tensor approach to averaging Jacobi fields along geodesicswith random curvature
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2010
%P 58-61
%N 5
%U http://geodesic.mathdoc.fr/item/VMUMM_2010_5_a10/
%G ru
%F VMUMM_2010_5_a10
D. A. Grachev. Tensor approach to averaging Jacobi fields along geodesicswith random curvature. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2010), pp. 58-61. http://geodesic.mathdoc.fr/item/VMUMM_2010_5_a10/