$(C,1)$-Summation of Fourier series over rearranged Vilenkin system
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2010), pp. 7-15

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cesaro means of a function $f$ with respect to the Vilenkin system in Kaczmarz rearrangement are considered. We prove that these means of a summable function converge to it almost everywhere.
@article{VMUMM_2010_4_a1,
     author = {I. V. Polyakov},
     title = {$(C,1)${-Summation} of {Fourier} series over rearranged {Vilenkin} system},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {7--15},
     publisher = {mathdoc},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_4_a1/}
}
TY  - JOUR
AU  - I. V. Polyakov
TI  - $(C,1)$-Summation of Fourier series over rearranged Vilenkin system
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2010
SP  - 7
EP  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2010_4_a1/
LA  - ru
ID  - VMUMM_2010_4_a1
ER  - 
%0 Journal Article
%A I. V. Polyakov
%T $(C,1)$-Summation of Fourier series over rearranged Vilenkin system
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2010
%P 7-15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2010_4_a1/
%G ru
%F VMUMM_2010_4_a1
I. V. Polyakov. $(C,1)$-Summation of Fourier series over rearranged Vilenkin system. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2010), pp. 7-15. http://geodesic.mathdoc.fr/item/VMUMM_2010_4_a1/