Invariant measures for non-contracting multi-valued mappings of the circle
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2010), pp. 43-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A problem of existence of an absolutely continuous invariant measure for contracting multivalued mappings of a circle is considered. It is shown that the existence of finite or infinite invariant measures depends on the differentiability class of the multivalued mapping.
@article{VMUMM_2010_3_a9,
     author = {A. N. Gorbachev},
     title = {Invariant measures for non-contracting multi-valued mappings of the circle},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {43--46},
     year = {2010},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_3_a9/}
}
TY  - JOUR
AU  - A. N. Gorbachev
TI  - Invariant measures for non-contracting multi-valued mappings of the circle
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2010
SP  - 43
EP  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2010_3_a9/
LA  - ru
ID  - VMUMM_2010_3_a9
ER  - 
%0 Journal Article
%A A. N. Gorbachev
%T Invariant measures for non-contracting multi-valued mappings of the circle
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2010
%P 43-46
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_2010_3_a9/
%G ru
%F VMUMM_2010_3_a9
A. N. Gorbachev. Invariant measures for non-contracting multi-valued mappings of the circle. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2010), pp. 43-46. http://geodesic.mathdoc.fr/item/VMUMM_2010_3_a9/