Cycle contraction in oriented graphs
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2010), pp. 36-38

Voir la notice de l'article provenant de la source Math-Net.Ru

An efficient algorithm exists for solution of the problem of determination of a branching of minimal weight among all branchings of maximal cardinality in an oriented graph. This algorithm is based on the cycle contraction technique and was developed by Tarjan. It is shown in this paper that this technique is applicable to a more general problem when the branching is subject to the additional condition that the set of vertices covered by this branching must be independent with respect to a given matroid.
@article{VMUMM_2010_3_a6,
     author = {P. V. Nalivaǐko},
     title = {Cycle contraction in oriented graphs},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {36--38},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_3_a6/}
}
TY  - JOUR
AU  - P. V. Nalivaǐko
TI  - Cycle contraction in oriented graphs
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2010
SP  - 36
EP  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2010_3_a6/
LA  - ru
ID  - VMUMM_2010_3_a6
ER  - 
%0 Journal Article
%A P. V. Nalivaǐko
%T Cycle contraction in oriented graphs
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2010
%P 36-38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2010_3_a6/
%G ru
%F VMUMM_2010_3_a6
P. V. Nalivaǐko. Cycle contraction in oriented graphs. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2010), pp. 36-38. http://geodesic.mathdoc.fr/item/VMUMM_2010_3_a6/