Estimates of the capacity of orthogonal arrays of large strength
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2010), pp. 49-51
Cet article a éte moissonné depuis la source Math-Net.Ru
D. G. Fon-Der-Flaass showed that Boolean correlation-immune $n$-variable functions of order $m$ are resilient for $m\ge\frac{2n-2}{3}$. In this paper this theorem is generalized to orthogonal arrays. It is shown that orthogonal arrays of strength $m$ not less than $\frac{2n-2}{3}$, where $n$ is a number of factors having size at least $2^{n-1}$ and all arrays of size $2^{n-1}$ are simple.
@article{VMUMM_2010_3_a11,
author = {A. V. Khalyavin},
title = {Estimates of the capacity of orthogonal arrays of large strength},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {49--51},
year = {2010},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_3_a11/}
}
A. V. Khalyavin. Estimates of the capacity of orthogonal arrays of large strength. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2010), pp. 49-51. http://geodesic.mathdoc.fr/item/VMUMM_2010_3_a11/