Estimates of the capacity of orthogonal arrays of large strength
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2010), pp. 49-51
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			D. G. Fon-Der-Flaass showed that Boolean correlation-immune $n$-variable functions of order $m$ are resilient for $m\ge\frac{2n-2}{3}$. In this paper this theorem is generalized to orthogonal arrays. It is shown that orthogonal arrays of strength $m$ not less than $\frac{2n-2}{3}$, where $n$ is a number of factors having size at least $2^{n-1}$ and all arrays of size $2^{n-1}$ are simple.
			
            
            
            
          
        
      @article{VMUMM_2010_3_a11,
     author = {A. V. Khalyavin},
     title = {Estimates of the capacity of orthogonal arrays of large strength},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {49--51},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_3_a11/}
}
                      
                      
                    A. V. Khalyavin. Estimates of the capacity of orthogonal arrays of large strength. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2010), pp. 49-51. http://geodesic.mathdoc.fr/item/VMUMM_2010_3_a11/
