Special classes of $l$-rings and Anderson--Divinsky--Sulinski lemma
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 42-44

Voir la notice de l'article provenant de la source Math-Net.Ru

If $\rho$ is a radical in the class of rings and $I$ is an ideal of a ring $R$, then $\rho(I)$ is an ideal of $R$ (the Anderson–Divinsky–Sulinski lemma). Let $\rho$ be a special radical in the class of $l$-rings (lattice-ordered rings) and $I$ be an $l$-ideal of an $l$-ring $R$. In this paper we prove that $\rho(I)$ is an $l$-ideal of the $l$-ring $R$ and $\rho(I)=\rho(R)\cap I$.
@article{VMUMM_2010_2_a7,
     author = {N. E. Shavgulidze},
     title = {Special classes of $l$-rings and {Anderson--Divinsky--Sulinski} lemma},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {42--44},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a7/}
}
TY  - JOUR
AU  - N. E. Shavgulidze
TI  - Special classes of $l$-rings and Anderson--Divinsky--Sulinski lemma
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2010
SP  - 42
EP  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a7/
LA  - ru
ID  - VMUMM_2010_2_a7
ER  - 
%0 Journal Article
%A N. E. Shavgulidze
%T Special classes of $l$-rings and Anderson--Divinsky--Sulinski lemma
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2010
%P 42-44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a7/
%G ru
%F VMUMM_2010_2_a7
N. E. Shavgulidze. Special classes of $l$-rings and Anderson--Divinsky--Sulinski lemma. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 42-44. http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a7/