Equations of $G$-minimal conic bundles with degree $4$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 39-42

Voir la notice de l'article provenant de la source Math-Net.Ru

The first nontrivial case of relatively $G$-minimal conic bundles being $G$-minimal is considered. The number $r$ of singular fibers equals $4$. Classification gives explicit equations of minimal conic bundles $(S,G)$ and an explicit action of the group $G$ on the Picard group $\operatorname{Pic}(S)$ and on the surface $S$.
@article{VMUMM_2010_2_a6,
     author = {V. I. Tsygankov},
     title = {Equations of $G$-minimal conic bundles with degree $4$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {39--42},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a6/}
}
TY  - JOUR
AU  - V. I. Tsygankov
TI  - Equations of $G$-minimal conic bundles with degree $4$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2010
SP  - 39
EP  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a6/
LA  - ru
ID  - VMUMM_2010_2_a6
ER  - 
%0 Journal Article
%A V. I. Tsygankov
%T Equations of $G$-minimal conic bundles with degree $4$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2010
%P 39-42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a6/
%G ru
%F VMUMM_2010_2_a6
V. I. Tsygankov. Equations of $G$-minimal conic bundles with degree $4$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 39-42. http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a6/