Bases of exponents in weighted spaces $L^p(-\pi,\pi)$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 36-38

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of exponents $\{e^{i\lambda_n t}\}_{n\in\mathbb{Z}}$ is considered in this article. A sufficient condition for a Riesz-property basis in the weighted space $L^p(-\pi,\pi)$ is obtained.
@article{VMUMM_2010_2_a5,
     author = {A. A. Yukhimenko},
     title = {Bases of exponents in weighted spaces $L^p(-\pi,\pi)$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {36--38},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a5/}
}
TY  - JOUR
AU  - A. A. Yukhimenko
TI  - Bases of exponents in weighted spaces $L^p(-\pi,\pi)$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2010
SP  - 36
EP  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a5/
LA  - ru
ID  - VMUMM_2010_2_a5
ER  - 
%0 Journal Article
%A A. A. Yukhimenko
%T Bases of exponents in weighted spaces $L^p(-\pi,\pi)$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2010
%P 36-38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a5/
%G ru
%F VMUMM_2010_2_a5
A. A. Yukhimenko. Bases of exponents in weighted spaces $L^p(-\pi,\pi)$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 36-38. http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a5/