Absolute stability of an optimally stabilizable system
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 66-70
Cet article a éte moissonné depuis la source Math-Net.Ru
An algorithm involving the linear minimax synthesis and bilinear analysis is improved. The Stewart platform dynamics is considered as an example of using this algorithm.
@article{VMUMM_2010_2_a15,
author = {V. V. Aleksandrov and O. V. Aleksandrova and L. Fragela Cuesta},
title = {Absolute stability of an optimally stabilizable system},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {66--70},
year = {2010},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a15/}
}
TY - JOUR AU - V. V. Aleksandrov AU - O. V. Aleksandrova AU - L. Fragela Cuesta TI - Absolute stability of an optimally stabilizable system JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2010 SP - 66 EP - 70 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a15/ LA - ru ID - VMUMM_2010_2_a15 ER -
V. V. Aleksandrov; O. V. Aleksandrova; L. Fragela Cuesta. Absolute stability of an optimally stabilizable system. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 66-70. http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a15/