Absolute stability of an optimally stabilizable system
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 66-70

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm involving the linear minimax synthesis and bilinear analysis is improved. The Stewart platform dynamics is considered as an example of using this algorithm.
@article{VMUMM_2010_2_a15,
     author = {V. V. Aleksandrov and O. V. Aleksandrova and L. Fragela Cuesta},
     title = {Absolute stability of an optimally stabilizable system},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {66--70},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a15/}
}
TY  - JOUR
AU  - V. V. Aleksandrov
AU  - O. V. Aleksandrova
AU  - L. Fragela Cuesta
TI  - Absolute stability of an optimally stabilizable system
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2010
SP  - 66
EP  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a15/
LA  - ru
ID  - VMUMM_2010_2_a15
ER  - 
%0 Journal Article
%A V. V. Aleksandrov
%A O. V. Aleksandrova
%A L. Fragela Cuesta
%T Absolute stability of an optimally stabilizable system
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2010
%P 66-70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a15/
%G ru
%F VMUMM_2010_2_a15
V. V. Aleksandrov; O. V. Aleksandrova; L. Fragela Cuesta. Absolute stability of an optimally stabilizable system. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 66-70. http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a15/