Absolute stability of an optimally stabilizable system
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 66-70
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An algorithm involving the linear minimax synthesis and bilinear analysis is improved. The Stewart platform dynamics is considered as an example of using this algorithm.
			
            
            
            
          
        
      @article{VMUMM_2010_2_a15,
     author = {V. V. Aleksandrov and O. V. Aleksandrova and L. Fragela Cuesta},
     title = {Absolute stability of an optimally stabilizable system},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {66--70},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a15/}
}
                      
                      
                    TY - JOUR AU - V. V. Aleksandrov AU - O. V. Aleksandrova AU - L. Fragela Cuesta TI - Absolute stability of an optimally stabilizable system JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2010 SP - 66 EP - 70 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a15/ LA - ru ID - VMUMM_2010_2_a15 ER -
%0 Journal Article %A V. V. Aleksandrov %A O. V. Aleksandrova %A L. Fragela Cuesta %T Absolute stability of an optimally stabilizable system %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2010 %P 66-70 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a15/ %G ru %F VMUMM_2010_2_a15
V. V. Aleksandrov; O. V. Aleksandrova; L. Fragela Cuesta. Absolute stability of an optimally stabilizable system. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 66-70. http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a15/
