Representation of solutions to equations of hyperbolic type
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 62-66
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The general solutions to hyperbolic equations of the fourth and sixth orders are obtained using Vekua's method for the representation of the general solutions to elliptic equations of order $2n$ with the aid of $n$ analytic functions. It is assumed that the right-hand sides of the hyperbolic equations can be expanded in time series of sines. The systems of equations of various approximations for a prismatic thin body in terms of moments with respect to a system of Legendre polynomials can be reduced to these equations and to the hyperbolic-type equations of higher order.
			
            
            
            
          
        
      @article{VMUMM_2010_2_a14,
     author = {A. R. Ulukhanyan},
     title = {Representation of solutions to equations of hyperbolic type},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {62--66},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a14/}
}
                      
                      
                    A. R. Ulukhanyan. Representation of solutions to equations of hyperbolic type. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 62-66. http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a14/
