The cardinality of the separated vertex set of a multidimensional cube
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 11-17
Cet article a éte moissonné depuis la source Math-Net.Ru
An $n$-dimensinal cube and a sphere inscribed into it are considered. The conjecture of A. Ben-Tal, A. Nemirovskii, C. Roos states that each tangent hyperplane to the sphere strictly separates not more than $2^{n-2}$ cube vertices. In this paper this conjecture is proved for $n\leq 6.$ New examples of hyperplanes separating exactly $2^{n-2}$ cube vertices are constructed for any $n$. It is proved that hyperplanes orthogonal to radius vectors of cube vertices separate less than $2^{n-2}$ cube vertices for $n\ge3$.
@article{VMUMM_2010_2_a1,
author = {I. N. Shnurnikov},
title = {The cardinality of the separated vertex set of a multidimensional cube},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {11--17},
year = {2010},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a1/}
}
I. N. Shnurnikov. The cardinality of the separated vertex set of a multidimensional cube. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 11-17. http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a1/