The cardinality of the separated vertex set of a multidimensional cube
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 11-17

Voir la notice de l'article provenant de la source Math-Net.Ru

An $n$-dimensinal cube and a sphere inscribed into it are considered. The conjecture of A. Ben-Tal, A. Nemirovskii, C. Roos states that each tangent hyperplane to the sphere strictly separates not more than $2^{n-2}$ cube vertices. In this paper this conjecture is proved for $n\leq 6.$ New examples of hyperplanes separating exactly $2^{n-2}$ cube vertices are constructed for any $n$. It is proved that hyperplanes orthogonal to radius vectors of cube vertices separate less than $2^{n-2}$ cube vertices for $n\ge3$.
@article{VMUMM_2010_2_a1,
     author = {I. N. Shnurnikov},
     title = {The cardinality of the separated vertex set of a multidimensional cube},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {11--17},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a1/}
}
TY  - JOUR
AU  - I. N. Shnurnikov
TI  - The cardinality of the separated vertex set of a multidimensional cube
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2010
SP  - 11
EP  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a1/
LA  - ru
ID  - VMUMM_2010_2_a1
ER  - 
%0 Journal Article
%A I. N. Shnurnikov
%T The cardinality of the separated vertex set of a multidimensional cube
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2010
%P 11-17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a1/
%G ru
%F VMUMM_2010_2_a1
I. N. Shnurnikov. The cardinality of the separated vertex set of a multidimensional cube. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 11-17. http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a1/