The cardinality of the separated vertex set of a multidimensional cube
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 11-17
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An $n$-dimensinal cube and a sphere inscribed into it are considered. The conjecture of A. Ben-Tal, A. Nemirovskii, C. Roos states that each tangent hyperplane to the sphere strictly separates not more than $2^{n-2}$ cube vertices. In this paper this conjecture is proved for $n\leq 6.$ New examples of hyperplanes separating exactly $2^{n-2}$ cube vertices are constructed for any $n$. It is proved that hyperplanes orthogonal to radius vectors of cube vertices separate less than $2^{n-2}$ cube vertices for $n\ge3$.
			
            
            
            
          
        
      @article{VMUMM_2010_2_a1,
     author = {I. N. Shnurnikov},
     title = {The cardinality of the separated vertex set of a multidimensional cube},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {11--17},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a1/}
}
                      
                      
                    TY - JOUR AU - I. N. Shnurnikov TI - The cardinality of the separated vertex set of a multidimensional cube JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2010 SP - 11 EP - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a1/ LA - ru ID - VMUMM_2010_2_a1 ER -
I. N. Shnurnikov. The cardinality of the separated vertex set of a multidimensional cube. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 11-17. http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a1/
