Properties of Ces\`aro means of double Fourier series
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 3-11
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The pointwise behavior of partial sums and Chesaro means of trigonometric series were studied in many papers. This article deals with behavior of rectangular Chesaro means at a point $(x_0,y_0)$ for functions $f(x,y)$ bounded on square the $[-\pi;\pi]^2$ and satisfying the condition $|f(x_0+s,y_0+t)-f(x_0,y_0)|\le\rho(\sqrt{s^2+t^2})^\alpha$, for some $\alpha\in(0,1)$ and all $s$ and $t$.
			
            
            
            
          
        
      @article{VMUMM_2010_2_a0,
     author = {A. M. D'yachenko},
     title = {Properties of {Ces\`aro} means of double {Fourier} series},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a0/}
}
                      
                      
                    A. M. D'yachenko. Properties of Ces\`aro means of double Fourier series. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 3-11. http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a0/
