Properties of Cesàro means of double Fourier series
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 3-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The pointwise behavior of partial sums and Chesaro means of trigonometric series were studied in many papers. This article deals with behavior of rectangular Chesaro means at a point $(x_0,y_0)$ for functions $f(x,y)$ bounded on square the $[-\pi;\pi]^2$ and satisfying the condition $|f(x_0+s,y_0+t)-f(x_0,y_0)|\le\rho(\sqrt{s^2+t^2})^\alpha$, for some $\alpha\in(0,1)$ and all $s$ and $t$.
@article{VMUMM_2010_2_a0,
     author = {A. M. D'yachenko},
     title = {Properties of {Ces\`aro} means of double {Fourier} series},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--11},
     year = {2010},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a0/}
}
TY  - JOUR
AU  - A. M. D'yachenko
TI  - Properties of Cesàro means of double Fourier series
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2010
SP  - 3
EP  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a0/
LA  - ru
ID  - VMUMM_2010_2_a0
ER  - 
%0 Journal Article
%A A. M. D'yachenko
%T Properties of Cesàro means of double Fourier series
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2010
%P 3-11
%N 2
%U http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a0/
%G ru
%F VMUMM_2010_2_a0
A. M. D'yachenko. Properties of Cesàro means of double Fourier series. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 3-11. http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a0/