Properties of Cesàro means of double Fourier series
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 3-11
Cet article a éte moissonné depuis la source Math-Net.Ru
The pointwise behavior of partial sums and Chesaro means of trigonometric series were studied in many papers. This article deals with behavior of rectangular Chesaro means at a point $(x_0,y_0)$ for functions $f(x,y)$ bounded on square the $[-\pi;\pi]^2$ and satisfying the condition $|f(x_0+s,y_0+t)-f(x_0,y_0)|\le\rho(\sqrt{s^2+t^2})^\alpha$, for some $\alpha\in(0,1)$ and all $s$ and $t$.
@article{VMUMM_2010_2_a0,
author = {A. M. D'yachenko},
title = {Properties of {Ces\`aro} means of double {Fourier} series},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--11},
year = {2010},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a0/}
}
A. M. D'yachenko. Properties of Cesàro means of double Fourier series. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 3-11. http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a0/