Properties of Ces\`aro means of double Fourier series
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 3-11

Voir la notice de l'article provenant de la source Math-Net.Ru

The pointwise behavior of partial sums and Chesaro means of trigonometric series were studied in many papers. This article deals with behavior of rectangular Chesaro means at a point $(x_0,y_0)$ for functions $f(x,y)$ bounded on square the $[-\pi;\pi]^2$ and satisfying the condition $|f(x_0+s,y_0+t)-f(x_0,y_0)|\le\rho(\sqrt{s^2+t^2})^\alpha$, for some $\alpha\in(0,1)$ and all $s$ and $t$.
@article{VMUMM_2010_2_a0,
     author = {A. M. D'yachenko},
     title = {Properties of {Ces\`aro} means of double {Fourier} series},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a0/}
}
TY  - JOUR
AU  - A. M. D'yachenko
TI  - Properties of Ces\`aro means of double Fourier series
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2010
SP  - 3
EP  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a0/
LA  - ru
ID  - VMUMM_2010_2_a0
ER  - 
%0 Journal Article
%A A. M. D'yachenko
%T Properties of Ces\`aro means of double Fourier series
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2010
%P 3-11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a0/
%G ru
%F VMUMM_2010_2_a0
A. M. D'yachenko. Properties of Ces\`aro means of double Fourier series. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2010), pp. 3-11. http://geodesic.mathdoc.fr/item/VMUMM_2010_2_a0/