Stability of forced torsional vibrations of an equipped rod
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2010), pp. 57-62

Voir la notice de l'article provenant de la source Math-Net.Ru

An equipped elastic rod model demonstrating the one-dimensional Cosserat continuum properties under longitudinal and rotary motion is considered. Natural and forced-by-flow rotary oscillations are studied. Exact conditions of oscillatory stability and instability are obtained. The typical motion features are found: exactly two different forms and two different frequencies in each oscillation mode as well as the onset of a divergence mode with an increase of external load intensity.
@article{VMUMM_2010_1_a9,
     author = {G. L. Brovko and S. A. Kuzichev},
     title = {Stability of forced torsional vibrations of an equipped rod},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {57--62},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_1_a9/}
}
TY  - JOUR
AU  - G. L. Brovko
AU  - S. A. Kuzichev
TI  - Stability of forced torsional vibrations of an equipped rod
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2010
SP  - 57
EP  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2010_1_a9/
LA  - ru
ID  - VMUMM_2010_1_a9
ER  - 
%0 Journal Article
%A G. L. Brovko
%A S. A. Kuzichev
%T Stability of forced torsional vibrations of an equipped rod
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2010
%P 57-62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2010_1_a9/
%G ru
%F VMUMM_2010_1_a9
G. L. Brovko; S. A. Kuzichev. Stability of forced torsional vibrations of an equipped rod. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2010), pp. 57-62. http://geodesic.mathdoc.fr/item/VMUMM_2010_1_a9/