The linearity of metric projection operator for subspaces of $L_p$ spaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2010), pp. 30-36
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $Y$ be a Chebyshev subspace of a Banach space $X$. Then the single-valued metric projection operator $P_Y:X\to Y$ taking each $x\in X$ to the nearest element $y\in Y$ is well defined. Let $M$ be an arbitrary set and $\mu$ be a $\sigma$-finite measure on some $\sigma$-algebra $\Sigma$ of subsets of $M$. We give a description of Chebyshev subspaces $Y\subset L_p(M,\Sigma,\mu)$ with finite dimension and finite codimension the operator $P_Y$ is linear for.
@article{VMUMM_2010_1_a4,
author = {Yu. Yu. Druzhinin},
title = {The linearity of metric projection operator for subspaces of $L_p$ spaces},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {30--36},
publisher = {mathdoc},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_1_a4/}
}
TY - JOUR AU - Yu. Yu. Druzhinin TI - The linearity of metric projection operator for subspaces of $L_p$ spaces JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2010 SP - 30 EP - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2010_1_a4/ LA - ru ID - VMUMM_2010_1_a4 ER -
Yu. Yu. Druzhinin. The linearity of metric projection operator for subspaces of $L_p$ spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2010), pp. 30-36. http://geodesic.mathdoc.fr/item/VMUMM_2010_1_a4/