Estimation of Dirichlet kernel difference in the norm of $\mathrm{L}$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2010), pp. 12-18
Voir la notice de l'article provenant de la source Math-Net.Ru
This work is related to the problem of estimation of the norm of a trigonometrical polynomials through their coefficient in $\mathrm{L}$. It is proved that the norm of the difference of Dirichlet's kernels in $\mathrm{L}$ has the precise order $\ln(n-m)$ and the lower estimate is also valid with the coefficient $4/\pi^{2}$. A theorem and two lemmas are presented showing that the coefficients $c$ at $\ln(n-m)$ in an asymptotc estimate uniform with resepect to $m$ and $n$ may be greater than $4/\pi^{2}$ and its value in examples depends on arithmetic properties of $n$ and $m$.
@article{VMUMM_2010_1_a1,
author = {V. O. Tonkov},
title = {Estimation of {Dirichlet} kernel difference in the norm of $\mathrm{L}$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {12--18},
publisher = {mathdoc},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_1_a1/}
}
V. O. Tonkov. Estimation of Dirichlet kernel difference in the norm of $\mathrm{L}$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2010), pp. 12-18. http://geodesic.mathdoc.fr/item/VMUMM_2010_1_a1/