Estimation of Dirichlet kernel difference in the norm of $\mathrm{L}$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2010), pp. 12-18

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is related to the problem of estimation of the norm of a trigonometrical polynomials through their coefficient in $\mathrm{L}$. It is proved that the norm of the difference of Dirichlet's kernels in $\mathrm{L}$ has the precise order $\ln(n-m)$ and the lower estimate is also valid with the coefficient $4/\pi^{2}$. A theorem and two lemmas are presented showing that the coefficients $c$ at $\ln(n-m)$ in an asymptotc estimate uniform with resepect to $m$ and $n$ may be greater than $4/\pi^{2}$ and its value in examples depends on arithmetic properties of $n$ and $m$.
@article{VMUMM_2010_1_a1,
     author = {V. O. Tonkov},
     title = {Estimation of {Dirichlet} kernel difference in the norm of $\mathrm{L}$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {12--18},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2010_1_a1/}
}
TY  - JOUR
AU  - V. O. Tonkov
TI  - Estimation of Dirichlet kernel difference in the norm of $\mathrm{L}$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2010
SP  - 12
EP  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2010_1_a1/
LA  - ru
ID  - VMUMM_2010_1_a1
ER  - 
%0 Journal Article
%A V. O. Tonkov
%T Estimation of Dirichlet kernel difference in the norm of $\mathrm{L}$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2010
%P 12-18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2010_1_a1/
%G ru
%F VMUMM_2010_1_a1
V. O. Tonkov. Estimation of Dirichlet kernel difference in the norm of $\mathrm{L}$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (2010), pp. 12-18. http://geodesic.mathdoc.fr/item/VMUMM_2010_1_a1/