Adaptive approximation of a filtration problem for a viscous compressible fluid in a fissured porous medium
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2009), pp. 51-52

Voir la notice de l'article provenant de la source Math-Net.Ru

A filtration problem for a viscous compressible multiphase fluid mixture in a porous medium is considered in the case of high degree anisotropy caused by fractions. A correct spatial discretization is discussed. A comparison between the subgrid method and other multipoint methods is performed.
@article{VMUMM_2009_6_a9,
     author = {N. S. Melnichenko},
     title = {Adaptive approximation of a filtration problem for a viscous compressible fluid in a fissured porous medium},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {51--52},
     publisher = {mathdoc},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a9/}
}
TY  - JOUR
AU  - N. S. Melnichenko
TI  - Adaptive approximation of a filtration problem for a viscous compressible fluid in a fissured porous medium
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2009
SP  - 51
EP  - 52
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a9/
LA  - ru
ID  - VMUMM_2009_6_a9
ER  - 
%0 Journal Article
%A N. S. Melnichenko
%T Adaptive approximation of a filtration problem for a viscous compressible fluid in a fissured porous medium
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2009
%P 51-52
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a9/
%G ru
%F VMUMM_2009_6_a9
N. S. Melnichenko. Adaptive approximation of a filtration problem for a viscous compressible fluid in a fissured porous medium. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2009), pp. 51-52. http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a9/