Cantor set and interpolation
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2009), pp. 26-32
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In 1998, Y. Benyamini published interesting results concerning interpolation of sequences using continuous functions $\mathbb R\to\mathbb R$. In particular, he proved that there exists a continuous function $\mathbb R\to \mathbb R$ which in some sense “interpolates” all sequences $(x_n)_{n\in\mathbb Z}\in [0,1]^{\mathbb Z}$ “simultaneously.” In 2005, R. Naulin M. and C. Uzcátegui unifyed and generalized Benyamini's results. In this paper, the case of topological spaces $X$ and $Y$ with an abelian group acting on $X$ is considered. A similar problem of “simultaneous interpolation” of all “generalized sequences” using continuous mappings $X\to Y$ is posed. Further generalizations of Naulin–Uncátegui theorems, in particular, multidimensional analogues of Benyamini's results are obtained.
			
            
            
            
          
        
      @article{VMUMM_2009_6_a4,
     author = {O. D. Frolkina},
     title = {Cantor set and interpolation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {26--32},
     publisher = {mathdoc},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a4/}
}
                      
                      
                    O. D. Frolkina. Cantor set and interpolation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2009), pp. 26-32. http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a4/
