Algebraicity of the radical in local rings
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2009), pp. 23-26

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we continue the study of algebraic subsets of noncommutative local rings. (A subset of a ring is said to be algebraic if there exists a monic polynomial with coefficients from the ring vanishing on the subset.) In particular, we prove that the Jacobson radical of a local ring is an algebraic subset if and only if it is a nil ideal of a bounded index.
@article{VMUMM_2009_6_a3,
     author = {I. O. Kachkovskii},
     title = {Algebraicity of the radical in local rings},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {23--26},
     publisher = {mathdoc},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a3/}
}
TY  - JOUR
AU  - I. O. Kachkovskii
TI  - Algebraicity of the radical in local rings
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2009
SP  - 23
EP  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a3/
LA  - ru
ID  - VMUMM_2009_6_a3
ER  - 
%0 Journal Article
%A I. O. Kachkovskii
%T Algebraicity of the radical in local rings
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2009
%P 23-26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a3/
%G ru
%F VMUMM_2009_6_a3
I. O. Kachkovskii. Algebraicity of the radical in local rings. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2009), pp. 23-26. http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a3/