Algebraicity of the radical in local rings
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2009), pp. 23-26
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we continue the study of algebraic subsets of noncommutative local rings. (A subset of a ring is said to be algebraic if there exists a monic polynomial with coefficients from the ring vanishing on the subset.) In particular, we prove that the Jacobson radical of a local ring is an algebraic subset if and only if it is a nil ideal of a bounded index.
@article{VMUMM_2009_6_a3,
author = {I. O. Kachkovskii},
title = {Algebraicity of the radical in local rings},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {23--26},
publisher = {mathdoc},
number = {6},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a3/}
}
I. O. Kachkovskii. Algebraicity of the radical in local rings. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2009), pp. 23-26. http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a3/