The nilpotent $\pi$-length of maximum subgroups in finite $\pi$-soluble groups
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2009), pp. 3-8
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A connection between $\pi$-lengths of a $\pi$-soluble group and its maximal subgroup is established. The results are applied to the corresponding projectors and injectors in soluble groups.
			
            
            
            
          
        
      @article{VMUMM_2009_6_a0,
     author = {V. S. Monakhov and O. A. Shpyrko},
     title = {The nilpotent $\pi$-length of maximum subgroups in finite $\pi$-soluble groups},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--8},
     publisher = {mathdoc},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a0/}
}
                      
                      
                    TY - JOUR AU - V. S. Monakhov AU - O. A. Shpyrko TI - The nilpotent $\pi$-length of maximum subgroups in finite $\pi$-soluble groups JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2009 SP - 3 EP - 8 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a0/ LA - ru ID - VMUMM_2009_6_a0 ER -
%0 Journal Article %A V. S. Monakhov %A O. A. Shpyrko %T The nilpotent $\pi$-length of maximum subgroups in finite $\pi$-soluble groups %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2009 %P 3-8 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a0/ %G ru %F VMUMM_2009_6_a0
V. S. Monakhov; O. A. Shpyrko. The nilpotent $\pi$-length of maximum subgroups in finite $\pi$-soluble groups. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2009), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a0/
