The nilpotent $\pi$-length of maximum subgroups in finite $\pi$-soluble groups
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2009), pp. 3-8
Cet article a éte moissonné depuis la source Math-Net.Ru
A connection between $\pi$-lengths of a $\pi$-soluble group and its maximal subgroup is established. The results are applied to the corresponding projectors and injectors in soluble groups.
@article{VMUMM_2009_6_a0,
author = {V. S. Monakhov and O. A. Shpyrko},
title = {The nilpotent $\pi$-length of maximum subgroups in finite $\pi$-soluble groups},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--8},
year = {2009},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a0/}
}
TY - JOUR AU - V. S. Monakhov AU - O. A. Shpyrko TI - The nilpotent $\pi$-length of maximum subgroups in finite $\pi$-soluble groups JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2009 SP - 3 EP - 8 IS - 6 UR - http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a0/ LA - ru ID - VMUMM_2009_6_a0 ER -
V. S. Monakhov; O. A. Shpyrko. The nilpotent $\pi$-length of maximum subgroups in finite $\pi$-soluble groups. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2009), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a0/