The nilpotent $\pi$-length of maximum subgroups in finite $\pi$-soluble groups
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2009), pp. 3-8

Voir la notice de l'article provenant de la source Math-Net.Ru

A connection between $\pi$-lengths of a $\pi$-soluble group and its maximal subgroup is established. The results are applied to the corresponding projectors and injectors in soluble groups.
@article{VMUMM_2009_6_a0,
     author = {V. S. Monakhov and O. A. Shpyrko},
     title = {The nilpotent $\pi$-length of maximum subgroups in finite $\pi$-soluble groups},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--8},
     publisher = {mathdoc},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a0/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - O. A. Shpyrko
TI  - The nilpotent $\pi$-length of maximum subgroups in finite $\pi$-soluble groups
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2009
SP  - 3
EP  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a0/
LA  - ru
ID  - VMUMM_2009_6_a0
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A O. A. Shpyrko
%T The nilpotent $\pi$-length of maximum subgroups in finite $\pi$-soluble groups
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2009
%P 3-8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a0/
%G ru
%F VMUMM_2009_6_a0
V. S. Monakhov; O. A. Shpyrko. The nilpotent $\pi$-length of maximum subgroups in finite $\pi$-soluble groups. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2009), pp. 3-8. http://geodesic.mathdoc.fr/item/VMUMM_2009_6_a0/