New constitutive relations in the nonlinear theory of viscoelasticity
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2009), pp. 41-47
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper a generalization of Pobedria's viscoelasticity theory is considered for an isotropic solid with non-relaxing volume. Two types of special loads are considered for samples of Pobedria's material — isotropic compression and monoaxial tension. The obtained formulas are used to deduce necessary conditions of non-relaxing behavior of volume. It is shown that the conditions obtained in such a way are not only necessary, but also sufficient for the non-relaxing behavior of volume, even in the case of an arbitrary load.
@article{VMUMM_2009_5_a7,
author = {B. E. Pobedrya and A. B. Anisimov},
title = {New constitutive relations in the nonlinear theory of viscoelasticity},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {41--47},
publisher = {mathdoc},
number = {5},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_5_a7/}
}
TY - JOUR AU - B. E. Pobedrya AU - A. B. Anisimov TI - New constitutive relations in the nonlinear theory of viscoelasticity JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2009 SP - 41 EP - 47 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2009_5_a7/ LA - ru ID - VMUMM_2009_5_a7 ER -
B. E. Pobedrya; A. B. Anisimov. New constitutive relations in the nonlinear theory of viscoelasticity. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2009), pp. 41-47. http://geodesic.mathdoc.fr/item/VMUMM_2009_5_a7/