Equivalent transformations of formulas in $P_2$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2009), pp. 25-32
Voir la notice de l'article provenant de la source Math-Net.Ru
A new proof is given of the theorem originally proved by R. C. Lyndon that any equational class over a finite set of Boolean functions is finitely generated. The original proof of this theorem relied on E. L. Post's description of all closed classes of Boolean functions. J. Berman provided another proof of this theorem not based on description of Post's structure, but using some results from universal algebras.
@article{VMUMM_2009_5_a4,
author = {A. B. Ugol'nikov},
title = {Equivalent transformations of formulas in $P_2$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {25--32},
publisher = {mathdoc},
number = {5},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_5_a4/}
}
A. B. Ugol'nikov. Equivalent transformations of formulas in $P_2$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (2009), pp. 25-32. http://geodesic.mathdoc.fr/item/VMUMM_2009_5_a4/