Localization of small zeros of sine and cosine Fourier transforms of a finite positive nondecreasing function
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2009), pp. 35-41
Cet article a éte moissonné depuis la source Math-Net.Ru
Let a function $f$ be integrable, positive, and nondecreasing in the interval $(0,1)$. Then by Polya's theorem all zeros of the corresponding cosine- and sine-Fourier transforms are real and simple; in this case positive zeros lie in the intervals $(\pi(n-1/2),\pi(n+1/2)),\;(\pi n,\pi(n+1)),\;n\in\mathbb{N},$ respectively. In the case of the sine-transforms it is required that $f$ cannot be a stepped function with retional discontinuity points. In this paper, zeros of the function with small numbers are included into intervals being proper subsets of the corresponding Polya intervals. A localization of small zeros of the Mittag-Leffler function $E_{1/2}(-z^2;\mu),\,\mu\in(1,2)\cup(2,3)$ is obtained as a corollary.
@article{VMUMM_2009_4_a5,
author = {A. M. Sedletskii},
title = {Localization of small zeros of sine and cosine {Fourier} transforms of a finite positive nondecreasing function},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {35--41},
year = {2009},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_4_a5/}
}
TY - JOUR AU - A. M. Sedletskii TI - Localization of small zeros of sine and cosine Fourier transforms of a finite positive nondecreasing function JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2009 SP - 35 EP - 41 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMUMM_2009_4_a5/ LA - ru ID - VMUMM_2009_4_a5 ER -
%0 Journal Article %A A. M. Sedletskii %T Localization of small zeros of sine and cosine Fourier transforms of a finite positive nondecreasing function %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2009 %P 35-41 %N 4 %U http://geodesic.mathdoc.fr/item/VMUMM_2009_4_a5/ %G ru %F VMUMM_2009_4_a5
A. M. Sedletskii. Localization of small zeros of sine and cosine Fourier transforms of a finite positive nondecreasing function. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2009), pp. 35-41. http://geodesic.mathdoc.fr/item/VMUMM_2009_4_a5/