The complexity and depth of Boolean circuits for multiplication and inversion in some fields $GF(2^n)$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2009), pp. 3-7
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $n=(p-1)\cdot p^k,$ where $p$ is a prime number such that $2$ is a primitive root modulo $p$, $2^{p-1}-1$ is not divided by $p^2$. For a standard basis of the field $GF(2^n)$, a multiplier of complexity $ O(\log \log p)n\log n\log\log_p n$ and an invertor of complexity $ O(\log p\log\log p)n\log n\log\log_p n$ are constructed. In particular, in the case $p=3$ the upper bound $$ 5\frac{5}{8}n\log_3 n\log_2\log_3 n+O(n\log n) $$ for the multiplication complexity and the asymptotically $2,5$ times greater bound for the inversion complexity are obtained.
@article{VMUMM_2009_4_a0,
author = {S. B. Gashkov and I. S. Sergeev},
title = {The complexity and depth of {Boolean} circuits for multiplication and inversion in some fields $GF(2^n)$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {3--7},
year = {2009},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_4_a0/}
}
TY - JOUR AU - S. B. Gashkov AU - I. S. Sergeev TI - The complexity and depth of Boolean circuits for multiplication and inversion in some fields $GF(2^n)$ JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2009 SP - 3 EP - 7 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMUMM_2009_4_a0/ LA - ru ID - VMUMM_2009_4_a0 ER -
%0 Journal Article %A S. B. Gashkov %A I. S. Sergeev %T The complexity and depth of Boolean circuits for multiplication and inversion in some fields $GF(2^n)$ %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2009 %P 3-7 %N 4 %U http://geodesic.mathdoc.fr/item/VMUMM_2009_4_a0/ %G ru %F VMUMM_2009_4_a0
S. B. Gashkov; I. S. Sergeev. The complexity and depth of Boolean circuits for multiplication and inversion in some fields $GF(2^n)$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2009), pp. 3-7. http://geodesic.mathdoc.fr/item/VMUMM_2009_4_a0/